





使用矢量网络分析仪(VNA)测量滤波器的带外抑制是评估其性能的关键指标之一。带外抑制衡量的是滤波器在通带频率范围之外对信号的衰减能力。以下是详细的测量方法和频率范围设置技巧:
??一、测量原理与步骤
1.测量参数:带外抑制主要通过测量滤波器的前向传输系数(S21)来获取。S21的幅度(dB)直接反映了信号从端口1传输到端口2的损耗或增益。
2.操作:在VNA上设置合适的频率范围,测量该范围内S21的幅度响应。带外抑制值就是通带外特定频率点上S21的负值(衰减量)。例如,在某个频率点测得S21=-60dB,青岛矢量网络分析仪(vna),则表示该点的带外抑制为60dB。
3.校准至关重要:
*在连接滤波器之前,必须使用校准套件(如SOLT)在VNA的测试端口进行全双端口校准。
*校准范围应覆盖你计划测量的整个频率范围(包括通带和需要关注的带外区域)。
*校准后,连接直通(Through)标准件验证校准效果,确保S21接近0dB(±0.1dB内),S11/S22接近-∞dB(反射)。
??二、频率范围设置技巧(关键)
设置频率范围是测量带外抑制的环节,矢量网络分析仪(vna)中心,目标是在保证精度的前提下覆盖所需区域:
1.覆盖整个关注区域:
*起始频率:远低于通带下限(对于带通/低通)或远低于阻带起始点(对于高通)。例如,通带为1GHz-2GHz的带通滤波器,测低频抑制时,起始频率可能设到100MHz或更低。
*终止频率:远高于通带上限(对于带通/高通)或远高于阻带起始点(对于低通)。接上例,测高频抑制时,终止频率可能设到5GHz或更高。
*目的:确保完全覆盖滤波器规格书中要求的所有带外抑制测试点,并观察抑制曲线在带外的整体趋势(如抑制深度、抑制滚降斜率、是否存在异常谐振点)。
2.明确带外抑制要求点:
*仔细阅读滤波器的规格书,找出明确规定带外抑制要求的具体频率点或频率区间(如:在500MHz处抑制≥40dB;在3GHz-6GHz范围内抑制≥60dB)。
*必须将这些点或区间包含在你的扫描范围内。VNA的标记点功能可以读取这些点的S21值。
3.覆盖抑制深度要求:
*频率范围需要足够宽,以确保扫描能覆盖到滤波器达到其标称抑制深度(如80dB)的频率区域。如果你设置的终止频率过早,可能只看到抑制在上升但还没达到深点就停止了,导致低估实际性能。
4.点数设置(分辨率与效率平衡):
*足够点数:在通带边缘和抑制要求严格的区域(尤其是近端带外),设置较高的点数以保证足够的频率分辨率。这有助于通带到阻带的陡峭过渡(滚降)和识别可能存在的窄带杂散响应。
*优化点数:在远离通带、抑制已很深且变化平缓的远端区域,可以适当减少点数以提高扫描速度。避免在整个超宽频带上均匀设置过高点数导致测量时间过长。
*技巧:利用VNA的分段扫描功能。将整个频率范围划分为几个子段:
*段1:通带及其附近(高点数,如1001点)。
*段2:近端带外(较高点数,如501点)。
*段3:远端带外(较低点数,如201点)。
*为每个分段独立设置点数,在保证关键区域精度的同时显著提升整体测量效率。
5.考虑动态范围:
*测量高带外抑制(如>80dB)时,需要确保VNA在该频率点有足够的动态范围。
*如果动态范围不足(表现为远端带外噪声基底抬高),可尝试:
*降低IF带宽(提高信噪比,矢量网络分析仪(vna)机构,但会减慢扫描速度)。
*开启平均功能(降低噪声波动)。
*适当增加输出功率(需确保不损坏滤波器或使放大器饱和)。
6.功率设置:
*设置合适的源功率。功率过低可能导致远端带外信号低于VNA接收机底噪;功率过高可能导致滤波器中的有源器件(如有)饱和,或产生非线性效应,影响测量准确性。通常从-10dBm开始,根据需要调整。
??三、测量执行与结果解读
1.将已校准的VNA的两个测试端口通过电缆连接到滤波器的输入和输出端口(注意方向:Port1->输入,Port2->输出)。
2.设置好频率范围、点数、功率、IF带宽等参数。
3.启动扫描,测量S21幅度。
4.读取带外抑制:
*使用Marker功能将标记点移动到规格书要求的特定频率点,直接读取S21值(dB),其即为该点的带外抑制值(如S21=-65.3dB,抑制为65.3dB)。
*使用LimitLines功能在S21曲线上绘制水平线(如-60dB),直观检查整个带外区域是否满足抑制要求(曲线应位于限制线下方)。
*观察整个带外区域的S21曲线,确保抑制深度符合预期,没有异常的突起(杂散)或凹陷。
矢量网络仪常见报错:“端口无响应”?先查这 4 个硬件连接点。

1.测试端口与电缆连接(起点)
*接口物理状态:首先检查报错端口(如Port1/2)的接口是否有物理损伤、异物或污染。用放大镜观察内部探针是否弯曲、缩进或断裂。
*电缆连接紧固度:确认测试电缆的接头已完全旋紧至端口(听到轻微“咔哒”声)。虚接会导致信号开路,是“无响应”的主因之一。
*接头类型匹配:确保电缆接头类型(N型/3.5mm/SMA等)与仪器端口完全兼容。混用接头可能造成接触不良或机械损伤。
2.测试电缆完整性(高频信号通路)
*电缆弯折与损伤:检查电缆是否存在过度弯折(尤其接头根部)、压痕或扭曲。高频电缆内部结构脆弱,物理损伤会直接阻断信号。
*替代法验证:互换问题端口与正常端口的电缆。若报错跟随电缆转移,即可锁定故障电缆。替换为已知良好的同类型电缆是快验证方式。
*接头焊接点检查:轻轻摇动电缆接头,观察仪器屏幕信号是否跳变。若出现波动,提示内部焊点断裂或屏蔽层损坏。
3.校准件与被测件连接(终端负载状态)
*校准件安装:若在校准阶段报错,检查校准件(开路器/短路器/负载)是否完全插入端口。负载端面污染或磨损会导致阻抗失配,触发错误。
*被测件接口兼容性:确认被测设备(DUT)的接口规格与测试电缆匹配。例如:SMA母头连接时需使用SMA公头转接头,避免强行对接不兼容接口。
*DUT通电状态:若被测件为有源器件(如放大器),需确保其已正确上电且未进入保护状态。部分器件在过载时会关闭输入端口,导致无响应。
4.外部适配器与夹具(隐藏故障点)
*转接器/夹具检查:若使用转接器(如SMA转N型)或测试夹具,将其移除后直接用电缆连接校准件测试。劣质转接器内部开路或短路是常见隐患。
*夹具探针接触:对于PCB测试夹具,确认探针是否对准待测点并施加足够压力。氧化或偏移的探针会导致接触失效。
*直流阻断配置:若被测件含直流成分(如偏置电路),需在链路中加入直流阻断器。仪器内部耦合器可能因直流电压饱和而报错。
快速诊断逻辑:
1.断开所有外部连接,仅将校准负载直接接入报错端口→若仍报错,故障在仪器端口或电缆。
2.互换端口电缆→若报错转移,更换故障电缆。
3.连接校准件正常但接DUT报错→检查DUT接口状态、供电及兼容性。
4.使用转接器后报错→拆除转接器直连验证。
>总结:80%的“端口无响应”源于物理连接问题。优先执行端口紧固→电缆替换→负载直连三步排查,可定位硬件故障点。若问题仍未解决,需考虑仪器内部射频模块或数字电路故障,建议联系厂商检测。

新手常认为选择频率范围远超被测器件(DUT)频率的VNA是“一步到位”或“性能更好”的选择。例如,觉得67GHz的VNA测2.4GHzWiFi肯定比6.5GHz或13.5GHz的VNA“更好”、“更准”或“更面向未来”。这是一种典型的误解。
为什么“杀鸡用牛刀”不合适?
1.高昂的成本浪费:这是直接的原因。VNA的价格与其频率、动态范围、相位噪声等指标密切相关。一台67GHz的VNA价格通常是覆盖6.5GHz或13.5GHz机型的数倍甚至数十倍。为测试2.4GHzWiFi(频率约2.5GHz,考虑到谐波或杂散,通常选到6GHz或13.5GHz足矣)投入如此巨大的成本,是极大的资源浪费。省下的预算可以购买更合适的仪器、夹具、校准件或用于其他研发。
2.低频段性能可能并非:
*动态范围:高频VNA的设计重点往往在其频段的性能优化(如本振设计、混频器选择)。在低频段(如2.4GHz),其动态范围(即同时测量强信号和弱信号的能力)可能反而不如专门为低频段优化的中端VNA。动态范围是测量滤波器、放大器等器件带外抑制、噪声系数的关键指标。
*迹线噪声:类似地,在低频段测量的本底噪声(迹线噪声)可能不如低频VNA低。这会影响小信号反射(如连接器微小缺陷)或低插损(如高质量电缆)的测量精度。
*稳定性:超宽带系统在低频段的稳定性有时需要更复杂的补偿,可能不如带宽较窄的仪器简单可靠。
3.操作复杂性与校准:高频VNA通常系统更复杂,校准步骤可能更多(尤其涉及波导校准或更复杂的误差模型),对操作人员的要求更高。对于只需要测量S参数、匹配、插损等基本指标的2.4GHzWiFi器件(天线、滤波器、功放、PCB走线),使用中低频VNA操作更简单快捷,校准流程更成熟稳定(如常用的3.5mm或N型校准件)。
4.体积、重量与功耗:高频VNA通常体积更大、更重、功耗更高。对于实验室工作台或产线测试环境,更紧凑轻便的中低频VNA更具优势。
如何正确选择频率范围?
1.确定DUT的工作频率(f_max):明确你要测什么。对于2.4GHzWiFi,信号主频是2.4-2.5GHz。
2.考虑谐波和杂散:如果需要评估DUT的谐波失真或杂散特性,频率范围需要覆盖到足够高的谐波次数(如3次谐波约7.5GHz,5次谐波约12.5GHz)。
3.应用需求:如果主要关注S参数、匹配、插损、隔离度等,覆盖到2-3倍f_max通常足够(如2.4GHz的2-3倍是4.8-7.2GHz)。如果需要测量谐波或进行非线性分析,则需要覆盖到所需的谐波频率。
4.选择合适机型:基于以上分析:
*仅测S参数:选择频率≥6GHz(如KeysightE5061B/E5063A,R&SZNH)或9GHz/13.5GHz的机型绰绰有余。
*需测谐波到3次:选≥7.5GHz(如9GHz,13.5GHz)。
*需测谐波到5次或更高:考虑13.5GHz或20GHz机型。
*67GHz机型的目标应用是毫米波通信(5GNRFR2,802.11ad/ay)、雷达、高速半导体器件等,与2.4GHzWiFi的需求完全不匹配。
结论:
为2.4GHzWiFi测试选择67GHz的VNA,是典型的资源错配。它不仅造成巨大的、不必要的资金浪费,在低频段的某些关键性能(如动态范围、迹线噪声)上可能反而不及更便宜、更专注的中低频VNA,同时操作也更复杂。选择VNA的频率范围应遵循“适用性原则”,即覆盖DUT的工作频率及其必要的谐波/杂散分析范围,矢量网络分析仪(vna)公司,并留有适当余量(通常1.5倍到3倍f_max足够),而非盲目追求“指标”。对于2.4GHzWiFi应用,6GHz、9GHz或13.5GHz的VNA是更经济、且性能足够的选择。
中森检测收费合理-矢量网络分析仪(vna)中心由广州中森检测技术有限公司提供。广州中森检测技术有限公司坚持“以人为本”的企业理念,拥有一支高素质的员工队伍,力求提供更好的产品和服务回馈社会,并欢迎广大新老客户光临惠顾,真诚合作、共创美好未来。中森检测——您可信赖的朋友,公司地址:广州市南沙区黄阁镇市南公路黄阁段230号(自编八栋)211房(办公),联系人:陈果。