液体靠重力作用由顶部逐板流向塔底排出,并在各层塔板的板面上形成流动的液层;气体则在压力差推动下,由塔底向上经过均布在塔板上的开孔依次传播各层塔板由塔顶排出。
塔板上气液两相的接触状态是决定板上两相流流体力学及传质和传热规律的重要因素。当液体流量一定时,随着气速的增加,可以出现一下几种接触状态:
1、鼓泡接触状态
气速较低时,气体以鼓泡形式通过液层。由于气泡的数量不多,形成的气液混合物基本上以液体为主,气液两相接触的表面积不大,传质效率很低。
2、蜂窝状接触状态
随着气速增加,气泡数量不断增加。当气泡形成速度大于气泡浮升速度时气泡在液层中累积。气泡间相互碰撞,形成各种多面体的大气泡。由于气泡不易,表面得不到更新,玻璃精馏塔,所以此种状态不利于传热和传质。
3、泡沫接触状态
当气速继续增加,气泡数量急剧增加,气泡不断发生碰撞和,此时板上液体大部分以液膜的形式存在于气泡之间,形成一些直径较小,扰动十分剧烈动态泡沫,由于泡沫接触状态表面积大,并不断更新,是一种较好的接触状态。
4、喷射接触状态
当气速继续增加,把板上液体向上喷成大小不等的液滴,直径较大的液滴受重力作用落回到塔板上,直径较小的液滴被气体带走,形成液沫夹带。液滴回到塔板上又被分散,这种液滴反复形成和聚集,使传质面积增加,表面不断更新,是一种较好的接触状态。
工业生产中一般希望呈现泡沫态和喷射态两种状态。因喷射接触状态的气速高于泡沫接触状态,精馏塔,故喷射接触状态有较大的生产能力,但喷射状态液沫夹带较多,若控制不好,会破坏传质过程,所以多数塔均控制在泡沫接触状态下工作。
填料式精馏塔的工作机制
填料式精馏塔通过内部装填的特殊填料,实现气液两相的有效传质与混合物分离。其工作机制依托填料提供的巨大比表面积,为气液接触创造充分条件。
在填料式精馏塔内,液体从塔顶经分布器均匀喷洒,沿填料表面形成液膜向下流动;气体则从塔底逆流而上,与液膜充分接触。填料的结构(如拉西环、鲍尔环、阶梯环等)增加了气液接触面积和湍流程度,使传质效率显著提升。液体在填料表面不断更新,气体中的低沸点组分向液相传递,液相中的高沸点组分向气相转移,通过多次传质实现混合物分离。
为确保气液均匀分布,塔顶的液体分布器和塔底的气体分布装置至关重要。液体分布器需保证液体均匀分散,避免沟流和壁流现象;气体分布装置则让气体平稳进入塔内,防止冲击填料层。此外,填料层间常设置液体再分布器,收集并重新分配液体,避免液体向塔壁汇集导致传质效率下降。在塔底,再沸器提供热量使液体汽化;塔顶的冷凝器将上升蒸汽冷凝,部分回流维持塔内传质过程,实现混合物的连续精馏与分离。

判断精馏塔运行是否正常可从以下几个方面入手:
温度方面:精馏塔不同位置的温度是重要指标。塔顶温度应相对稳定且符合产品的沸点范围,若塔顶温度过高,可能是回流比过小,导致轻组分中重组分含量增加;温度过低则可能是回流比过大或塔顶冷却效果过强。塔釜温度也需稳定在一定范围,若塔釜温度过高,可能是加热量过大,易造成物料分解或结焦;温度过低则会使塔底产品中轻组分含量增加,精馏塔,影响分离效果。
压力方面:正常运行时,精馏塔内压力应保持稳定。压力波动可能由多种原因引起,如进料量、加热量的突然变化,或者塔顶冷凝器冷却效果不佳等。压力升高可能导致组分沸点升高,精馏塔设备,分离难度加大;压力降低则可能使轻组分过早汽化,影响产品质量。
液位方面:塔釜和塔顶的液位需保持在合适范围内。塔釜液位过高,会淹没再沸器,影响加热效果;液位过低则可能导致再沸器干烧,引发安全事故。塔顶回流罐液位过高,会使回流液流量不稳定;液位过低则可能无法提供足够的回流,影响精馏效果。
产品质量方面:定期对塔顶和塔釜产品进行质量分析,如通过气相色谱等手段检测产品的纯度和组分含量。若产品质量不符合要求,说明精馏塔的分离效果不佳,可能需要调整操作参数或检查设备是否存在故障。

正太压力容器(图)-精馏塔由烟台正太压力容器制造有限公司提供。烟台正太压力容器制造有限公司拥有很好的服务与产品,不断地受到新老用户及业内人士的肯定和信任。我们公司是商盟认证会员,点击页面的商盟客服图标,可以直接与我们客服人员对话,愿我们今后的合作愉快!